Prior Criticism in Bayesian Meta-Analysis

Leonhard Held

GMDS 2023

September 19, 2023

Estimation vs. Criticism

J. R. Statist. Soc. A, (1980), 143, Part 4, pp. 383-430

Sampling and Bayes' Inference in Scientific Modelling and Robustness

By George E. P. Box

University of Wisconsin-Madison

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the South Wales Local Group on Thursday, May 15th, 1980, the President SIR CLAUS MOSER in the Chair]

Box (1980) distinguishes

- Estimation based on posterior distribution $f(\theta | \text{data}, \text{ assumptions})$

Estimation vs. Criticism

J. R. Statist. Soc. A, (1980), 143, Part 4, pp. 383-430

Sampling and Bayes' Inference in Scientific Modelling and Robustness

By George E. P. Box

University of Wisconsin-Madison

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the South Wales Local Group on Thursday, May 15th, 1980, the President SIR CLAUS MOSER in the Chair]

Box (1980) distinguishes

- Estimation based on posterior distribution $f(\theta | \text{data, assumptions})$
- Criticism based on prior-predictive distribution f(data | assumptions)

Estimation vs. Criticism

J. R. Statist. Soc. A, (1980), 143, Part 4, pp. 383-430

Sampling and Bayes' Inference in Scientific Modelling and Robustness

By George E. P. Box

University of Wisconsin-Madison

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the South Wales Local Group on Thursday, May 15th, 1980, the President SIR CLAUS MOSER in the Chair]

Box (1980) distinguishes

- Estimation based on posterior distribution $f(\theta | \text{data, assumptions})$
- Criticism based on prior-predictive distribution *f*(data | assumptions)
- The assumptions include both model and prior assumptions.

Box (1980) suggests to compute

 $p_{Box} = \Pr \{ f(data \mid assumptions) < f(observed data \mid assumptions) \}$

Box (1980) suggests to compute

 $p_{Box} = \Pr \{ f(data \mid assumptions) < f(observed data \mid assumptions) \}$

- Quantifies compatability of model/prior with observed data.

Box (1980) suggests to compute

 $p_{Box} = Pr \{ f(data \mid assumptions) < f(observed data \mid assumptions) \}$

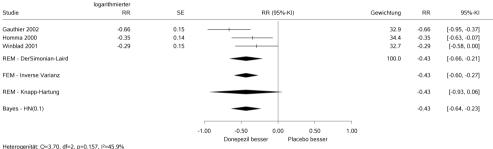
- Quantifies compatability of model/prior with observed data.
- Small values of p_{Box} indicate that model or prior are discredited by the observed data.

The Q-Test

- Model: Normal-normal model
- Prior: $\tau^2 = 0$
- Data: Differences between effect estimates $\hat{\theta}_i$ with standard errors σ_i
- \rightarrow f(observed data | assumptions) is the Q-statistic

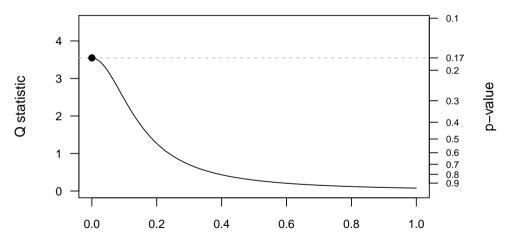
$$\mathcal{Q} = rac{\sum\limits_{i < j} w_i w_j (\hat{ heta}_i - \hat{ heta}_j)^2}{\sum\limits_{i=1}^k w_i}$$

where $w_i = 1/\sigma_i^2$ are "fixed-effect" weights.

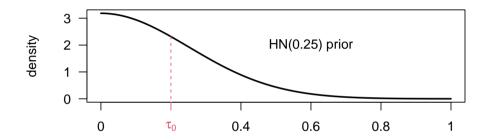

 $\rightarrow p_{\text{Box}}$ simplifies to the *p*-value obtained from the null distribution $Q \sim \chi^2_{k-1}$

The Generalized Q-Test

- Model: Normal-normal model
- Null hypothesis: $\tau^2 = \tau_0^2$
- The generalized *Q*-statistic $Q(\tau_0^2)$ now uses "random-effects" weights $w_i = 1/(\sigma_i^2 + \tau_0^2)$.
- We still have ${\it Q}(au_0^2) \sim \chi^2_{k-1}$ if $au^2 = au_0^2$
- Solving $Q(\tau^2) = k 1$ for τ^2 gives the Paule-Mandel estimate.

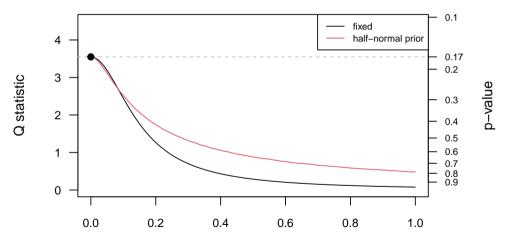

Example: Donepezil vs. Placebo

Donepezil vs. Placebo DAD, CMCS, PDS

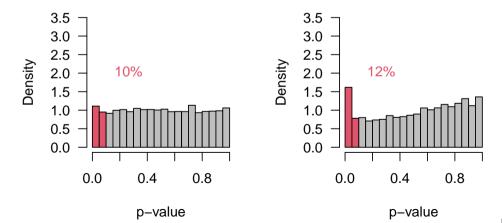

Gesamteffekt (REM - DerSimonian-Laird): Z-Score=-3.78, p<0.001, Tau=0.135

Example: Donepezil vs. Placebo

Checking the Heterogeneity Prior

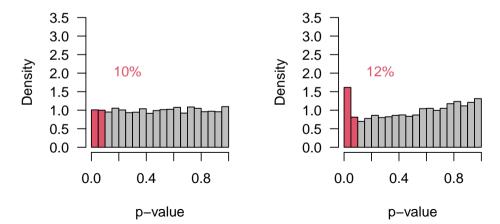

- Suppose we now have a half-normal prior $f(\tau)$ with $E(\tau) = \tau_0$

 $ightarrow \, p_{
m Box}$ is now based on au $\widetilde{Q} = \int Q(au^2) f(au^2) d au^2$


- The χ^2 -distribution still holds because τ^2 is a pivot for $Q(\tau^2)$ $\rightarrow p_{\text{Box}}$ can be easily calculated through Monte Carlo simulation.

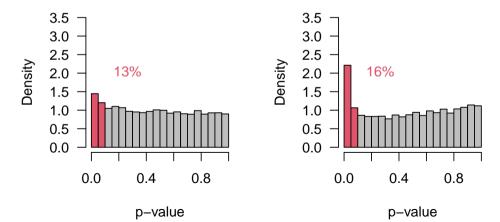
Example: Donepezil vs. Placebo

Type-I Error Assessment $k = 3, \tau_0 \sim f(\tau)$


Normal distribution

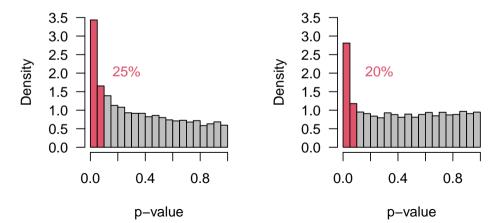
Power Assessment

k = 3, fixed $\tau_0 = 0.2 = E(\tau)$


Normal distribution

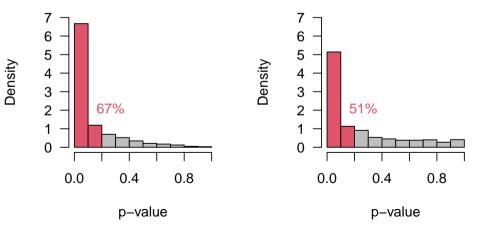
Power Assessment

k = 3, fixed $\tau_0 = 0.4 = 2 E(\tau)$


Normal distribution

Power Assessment

k = 3, fixed $\tau_0 = 0.8 = 4 E(\tau)$


Normal distribution

Aggregated Power Assessment for 10 Studies k = 3, fixed $\tau_0 = 0.8 = 4 E(\tau)$

Normal distribution

Summary

- *Q*-Test can be generalized to check heterogeneity prior and other model assumptions.
- Has low power for meta-analyses with very small *k*.
- Power can be increased by summation of *Q*-statistic across meta-analyses.

Summary and Discussion

- *Q*-Test can be generalized to check heterogeneity prior and other model assumptions.
- Has low power for meta-analyses with very small *k*.
- Power can be increased by summation of *Q*-statistic across meta-analyses.

- Heterogeneity prior is not the only critical assumption
- Normality assumption may also be wrong due to publication bias etc.

References

Box, G. E. P. (1980). Sampling and Bayes' inference in scientific modelling and robustness (with discussion). Journal of the Royal Statistical Society, Series A, 143:383–430.