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Disclaimer

The views and opinions expressed in this presentation and on the
slides are solely those of the presenters and are not necessarily
those of Novartis. Novartis does not guarantee the accuracy or
reliability of the information provided herein.
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Use of historical control data in clinical trials
Goal: reduce control group sample size while maintaining power

Design a (future) trial using synthesized evidence on control:

1. Collect historical (control) data from relevant literature
systematically

2. Evaluate heterogeniety of historical data
• data quality
• patient population
• trial design

3. Pre-specify trial protocol
• what is the evidence used precisely?
• how is the main analysis conducted?

4. Document properties of trial design using historical evidence
• type I error
• power

RBesT R package on CRAN supports steps 3-4
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Meta-Analytic-Predictive prior approach
A MAP prior is (in essence) a data-driven prior

𝑦𝑖|𝜃𝑖, 𝑛𝑖 ∼ Binomial(𝜃𝑖) & logit(𝜃𝑖)|𝛽, 𝜏 ∼ Normal(𝛽, 𝜏2)
𝛽 ∼ 𝑃𝛽 & 𝜏 ∼ 𝑃𝜏

Mean: 𝑝(𝛽|𝑦) is the population
mean or the typical trial result
MAP: 𝑝(𝜃∗|𝑦) is the predictive
distribution for the mean of a
future trial ⇒ model is generative
Between-trial heterogeniety 𝜏
critically governs borrowing

• 𝜏 → 0 ⇒ pooling
• 𝜏 → ∞ ⇒ stratification
• not informed from data alone

as often only 3, 2 or just 1 study!
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Discussion 𝜏 prior choice
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Prior choices for 𝑃𝜏 and 𝑃𝛽 endpoint specific
Binary and normal endpoints

very
conservative1 conservative1,2

Endpoint 𝜏 prior 𝜏 prior 𝛽 prior3

Binary 0.2 < 𝜋 < 0.8 N+(0, 1) N+(0, (1/2)2) N(0, 22)
Normal known 𝜎 N+(0, (𝜎/2)2) N+(0, (𝜎/4)2) N(𝜇0, 𝜎2)
1. very conservative, see Neuenschwander et al., 2010
2. less heterogeneous data as often seen empirically in

meta-analysis, see Friede et al., 2016
3. unit-information prior for 𝛽, see Kass & Wasserman, 1995

• 𝜎1 ≈ 2 for log-odds scale
• 𝜇0 set problem dependent (often 0)

These priors have been studied in the literature and are
known for reasonable properties in a wide range of settings
of early drug development phases.
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IQWiG analysis: data-driven prior derivation
Analysis of meta-analyses

𝑦𝑖𝑗|𝜇𝑗, 𝜏𝑗 ∼ Normal(𝜇𝑗, 𝜎2
𝑖𝑗 + 𝜏2

𝑗 )
𝜇𝑗|𝜇𝑝, 𝜎𝑝 ∼ Normal(𝜇𝑝, 𝜎2

𝑝)
𝜏𝑗|𝑠 ∼ 𝑃𝜏(𝑠)

𝑠 ∼ Uniform(0, 𝑏)

𝑗 meta-analysis, 𝑖 = 1, ..., 𝑘𝑗 study within meta-analysis 𝑗
model aimed at common 𝜏 prior 𝑃𝜏 with scale parameter 𝑠
log-OR analysis uses 𝜇𝑝 = 0, 𝜎𝑝 = 100, 𝑏 = 10

• The choice of 𝑠 ∼ Uniform(0, 𝑏) with large 𝑏 can make results
depend on the choice of 𝑏. As the data-set seems to be large,
this is likely not an issue, but can become relevant for smaller
data-sets. Refer to Gelman (2006) or Gelman et al., BDA3,
section 5.7, p.128.

Refer to Röver et al., 2023
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IQWiG analysis results
Figure 1, Röver et al., 2023, log-OR, 𝑃𝜏 = HalfNormal

𝑝(𝑠|𝑦) posterior distribution 𝑠 𝑝(𝜏⋆|𝑦) predictive distribution 𝜏⋆

(marginalizes over 𝑝(𝑠|𝑦))
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Derived 𝜏 prior with a half normal distribution
Heterogeneity classification for log-OR by Spiegelhalter
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Summary
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Summary historical control data
Informative MAP priors are widley in use

Attractive for patients
• Avoids unnecessary

enrollement to control
treatment

• Unequal randomization
(higher chance to recieve
active treatment)

Faster trial conduct
Broad application in drug
development (early phases,
pediatrics, rare diseases)

Data missing for other
endpoints
Study results become
dependent on analysis
assumptions
Requirement to align all
stakeholders
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Summary empirical heterogeneity prior
Data-driven basis for heterogeneity prior 𝑃𝜏

Analysis model accounts for
full uncertainty
𝑝(𝜏⋆|𝑦) is “best” for IQWiG
compiled data set 𝑦
Prior evaluation shows
mostly small to moderate
degree of heterogeneity (in
line with PICO framework
used for trial inclusion
criteria)

Publication of full data-set
& programs desirable for full
transparency
Extension of model to
by-arm estimates could
result in applications of
borrowing historical controls
Choice of final 𝑝(𝜏) should
be based on predictive from
a Bayesian perspective
(marginalizes out
uncertainty)

14 | Informative priors in clinical trials| Sebastian Weber| 2023-09-19



Backup
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Use of informative priors in biostatistics
Applications in drug development

historical control data
• sample size reduction in control group while maintaining

statistical power
• aid in trial design to define true effect
• aid in assessment of design parameters like variability
• probability of success

pediatric extrapolation
• predicting pediatric outcomes based on adult data

Are children like small adults?
• combine discounted adult evidence with pediatric data

historical treatment effect data (network meta-analysis)
• support futility decisions at interim analysis
• derivation of non-inferiority margins
• sample size reduction for head-to-head comparison trials
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Generalized Meta-Analytic-Predictive model
Hierarchical model to obtain predictive of mean parameter

𝑌 is the (control) group summary data for 𝐻 historical trials

𝑌ℎ|𝜃ℎ ∼ 𝑓(𝜃ℎ) ∀ ℎ ∈ [1, 𝐻]
𝑌∗|𝜃∗ ∼ 𝑓(𝜃∗) for new trial (generative)

Exchangeability assumption:
𝑔(𝜃ℎ)|𝛽, 𝜏 ∼ Normal(𝛽, 𝜏2) ∀ ℎ ∈ [1, 𝐻]
𝑔(𝜃∗)|𝛽, 𝜏 ∼ Normal(𝛽, 𝜏2) for new trial (generative)

𝑓 likelihood / 𝑔 link function
Binomial/logit, Normal (known 𝜎)/identity or Poisson/log
𝛽 population mean with prior Normal(𝑚𝛽, 𝑠2

𝛽)
𝜏 between-trial heterogeniety with prior 𝑃𝜏
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The hierarchical model: A data driven prior
The normal-normal hierarchical model with known 𝜎 and 𝜏 with
𝑛ℎ measurements per group is:

𝑦ℎ|𝜃ℎ, 𝜎 ∼ Normal(𝜃ℎ, 𝜎2)
𝜃ℎ|𝛽, 𝜏 ∼ Normal(𝛽, 𝜏2)

Then the conditional posterior on 𝑦ℎ for 𝜃ℎ is (𝛽 & 𝜏 known):
𝜃ℎ|𝛽, 𝜏 , 𝑦ℎ ∼ Normal( ̂𝜃ℎ, 𝑉ℎ)

̂𝜃ℎ =
1

𝜏2 𝛽 + 1
𝑠𝑒2

ℎ
̄𝑦ℎ

1
𝑉ℎ

and 1
𝑉ℎ

= 1
𝜏2 + 1

𝑠𝑒2
ℎ

The per-group mean ̂𝜃ℎ is a precision weighted average of
the data-mean ̄𝑦ℎ and the population mean 𝛽
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